Left Jordan derivations on Banach algebras

Authors

  • A. Ebadian
  • M. Eshaghi Gordji
Abstract:

In this paper we characterize the left Jordan derivations on Banach algebras. Also, it is shown that every bounded linear map $d:mathcal Ato mathcal M$ from a von Neumann algebra $mathcal A$ into a Banach $mathcal A-$module $mathcal M$ with property that $d(p^2)=2pd(p)$ for every projection $p$ in $mathcal A$ is a left Jordan derivation.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Left derivable or Jordan left derivable mappings on Banach algebras

‎Let $mathcal{A}$ be a unital Banach algebra‎, ‎$mathcal{M}$ be a left $mathcal{A}$-module‎, ‎and $W$ in $mathcal{Z}(mathcal{A})$ be a left separating point of $mathcal{M}$‎. ‎We show that if $mathcal{M}$ is a unital left $mathcal{A}$-module and $delta$ is a linear mapping from $mathcal{A}$ into $mathcal{M}$‎, ‎then the following four conditions are equivalent‎: ‎(i) $delta$ is a Jordan left de...

full text

Jordan Homomorphisms and Derivations on Semisimple Banach Algebras

1. Introduction. One may construct a Jordan homomorphism from one (associative) ring into another ring by taking the sum of a homo-morphism and an antihomomorphism of the first ring into two ideals in the second ring with null intersection [6]. A number of authors have considered conditions on the rings that imply that every Jordan homomorphism, or isomorphism, is of this form [6], [3], [7], [1...

full text

Approximate Quaternary Jordan Derivations on Banach Quaternary Algebras

We show that a quaternary Jordan derivation on a quaternary Banach algebra associated with the equation f( x+ y + z 4 ) + f( 3x− y − 4z 4 ) + f( 4x+ 3z 4 ) = 2f(x) . is satisfied in generalized Hyers–Ulam stability.

full text

left derivable or jordan left derivable mappings on banach algebras

‎let $mathcal{a}$ be a unital banach algebra‎, ‎$mathcal{m}$ be a left $mathcal{a}$-module‎, ‎and $w$ in $mathcal{z}(mathcal{a})$ be a left separating point of $mathcal{m}$‎. ‎we show that if $mathcal{m}$ is a unital left $mathcal{a}$-module and $delta$ is a linear mapping from $mathcal{a}$ into $mathcal{m}$‎, ‎then the following four conditions are equivalent‎: ‎(i) $delta$ is a jordan left de...

full text

Derivations on Banach Algebras

The separating space of a derivation onA is a separating ideal [2, Chapter 5]; it also satisfies the same property for the left products. The following assertions are of the most famous conjectures about derivations on Banach algebras: (C1) every derivation on a Banach algebra has a nilpotent separating ideal; (C2) every derivation on a semiprime Banach algebra is continuous; (C3) every derivat...

full text

On Jordan left derivations and generalized Jordan left derivations of matrix rings

Abstract. Let R be a 2-torsion free ring with identity. In this paper, first we prove that any Jordan left derivation (hence, any left derivation) on the full matrix ringMn(R) (n 2) is identically zero, and any generalized left derivation on this ring is a right centralizer. Next, we show that if R is also a prime ring and n 1, then any Jordan left derivation on the ring Tn(R) of all n×n uppe...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 6  issue None

pages  1- 6

publication date 2011-05

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023